
COOR

scott snyder

May 3, 1999

Contents

1 Notational Conventions 1

2 Overview 2

3 Summary of Requirements 4

4 Detector Model 5

5 Protocols 9

5.1 Coor-Client Communication 9

5.2 Coor-Downloader Communication 13

5.2.1 Common Protocol . 14

5.2.2 Epics . 18

5.2.3 Level 1 . 18

5.2.4 Level 3 . 20

5.2.5 Data Logging . 20

6 Run Transitions 21

A State Diagrams 21

1 Notational Conventions

Text in this font refers to features of coor which are planned, but not yet

implemented.

1

2 Overview

The coor program is responsible for coordinating changes in state of the

software and hardware components comprising the data acquisition system.

Clients wishing to use pieces of the system must send requests to the coor,

which will ensure that the request does not conict with those of other clients.

Coor will then communicate with the rest of the system to put it in the state

requested by the client.

Requests to begin and end runs are also considered state changes which

should go through the coor. In response to such a request, it will step

the other components of the system through the proper sequence of actions.

These requests may come not only directly from clients, but may also be

generated by the data logging and alarm systems to automatically stop or

pause a run due to an error condition.

Figure 1 illustrates the main communication paths to and from coor. At

the top of the �gure are the clients, which make requests of coor. These will

most commonly be instances of the taker program, which is the primary

user interface for controlling data taking. However, there will also be clients

to display status information about coor, and to provide expert-level control

of coor itself. At the bottom of the �gure are the targets, with which coor

communicates in order to e�ect changes in the system. At present the set of

targets includes the Level 1 and 2 triggers (through the L1TCC), the Level 3

trigger (through the L3 supervisor), the epics system (though a translator

program), and the data logging system.

Coor also talks to the alarm system (illustrated on the left), not only

to report its own errors, but also to report major state changes, such as the

beginnings and ends of runs. The alarm system will then make these state

change noti�cations available to any other components of the system which

want them.

Note the following:

� Coor is not in the data path. It is responsible for setting up and

terminating runs, but does not directly participate in them.

� The ow of commands is largely one-way, from the clients, through

coor, and �nally down to the targets. The exception is that coormay

send a noti�cation back to a client if its run has been asynchronously

stopped or paused. Note in particular that this implies that if the alarm

system or one of the targets wants to change the run state | such as

2

Coor

Taker

Control

Monitor

Level 3 Epics

LoggingLevel 1/2

Alarm

Figure 1: Primary communication paths to and from coor.

3

pausing physics runs on a fatal alarm or stopping a run after a �xed

number of events has been recorded | that component should make a

separate client connection back to coor to send the command. (This

is illustrated by the dashed lines in Figure 1.)

� Some of the targets, such as Level 3 or the data logging system, are

actually a collection of cooperating processes. For these targets, there

should be a single process with which coor communicates; this process

is then responsible for distributing the commands from coor to the

rest of the subsystem. This strategy should help to insulate coor from

the internal subsystem details and make it easier to isolate the various

pieces for testing and debugging.

3 Summary of Requirements

� Coor receives requests from clients to use pieces of the data acquisition

system. If such a request is compatible with other concurrent users of

the system, coor communicates with the other system components to

put them in the desired state.

� The subsystems which coor should be able to con�gure include:

{ The Level 1, Level 2, and Level 3 triggers.

{ The data logging system.

{ The digitizing crates and VBDs.

Other components may be added as the need arises, or they may be

controlled through other pathways. For example, in run I, calibration

pulsers were controlled through coor, while the high voltage, low volt-

age, and clock control subsystems were not.

� Coor receives requests from clients to begin and end runs. It again

ensures that the request is compatible with other users and, if so, com-

municates with the triggers and the data logging system to start data

owing.

� Coor receives requests from clients to pause and resume ongoing runs.

Pausing a run means disabling the Level 1 trigger bits used by that

4

run. This halts the ow of data in such a way that it can be rapidly

restarted.

� Coor may also receive requests to pause runs from the alarm system

(due to the detection of an error which may compromise the quality

of the data) or from the data logging system (if a limit was set on the

number of events to be collected in a run).

� Coor should send noti�cation of signi�cant state changes (such as runs

starting or ending) to the alarm system for distribution to any other

interested parties.

� Coor should arrange to record in an appropriate database the infor-

mation it has about each recorded run taken. (This may not actually

be done by coor, but instead by some other process with which it

communicates.)

� Coor should be able to supply information to clients and monitor-

ing programs concerning the current state of the detector components

which it manages.

� Client programs should be provided for taking data runs and displaying

the current status.

4 Detector Model

This section briey summarizes the concepts coor uses to model the current

state of the system.

All objects used to model the system state are instances of a class deriving

from Object_Base.Object. Each object has an object name. Objects are

associated with a registry, deriving from Object_Base.Object_Registry.

The Object_Base.Object class provides hooks for tracking all changes to

the object contents. This is used for logging, monitoring, and to allow for

undoing changes after discovering an error in a con�guration.

Object names are conventionally divided into two parts: a class tag, and

the name itself, written like tag:name. The class tag identi�es the type of

the object. Note that it is possible for two objects with di�erent class tags

to be implemented by the same Python class.

5

All objects which can be allocated derive from Ownership.Ownable, and

those which can allocate other objects derive from Ownership.Owner.

All objects which represent things which must be con�gured derive from

Generic_Item.Item. Such objects have a set of attributes which de�ne their

downloadable state. These are ordinary Python attributes of the object, but

they follow a special naming convention. Downloadable attributes which may

be changed at any time should start with `d_'. There are also `immutable'

attributes, which start with `i_'. These can be set when the item is �rst

allocated, but not afterwards. These are usually used to represent structural

relationships between items.

Two copies of the attributes are maintained. The actual Python at-

tributes of the item represent coor's idea of the current state of the item. If

the value of an attribute is None, that means the current state is unknown.

Each item also maintains a requested value for each attribute. This is what

has requested by the owner of the item, and is what coor will try to make

the current values reect by means of a download.

Each item can be in one of four states:

� UNKNOWN | The current state of the attributes in the external system

is unknown.

� VALID | The current state of the attributes in the external system

matches what has been requested.

� DOWNLOADING|There is a download operation in progress on this item,

to make the state of the attributes in the external system match what

has been requested.

� DOWNLOADING_INVALID | There is a download operation in progress,

but while it was in progress, this item has been invalidated. (Probably

due to a lost connection to the download target.) When the download

completes, the state of this item will become UNKNOWN.

When which has been owned is deallocated, the list of requested attribute

values is cleared and the item state is changed to UNKNOWN. Also, the state of

an owned object can be changed to UNKNOWN either by an explicit invalidation

request or due to a broken connection to the download target.

For most item types, the set of attributes used is de�ned by the Python

class representing that item. For most epics devices, however, a more generic

6

representation is used, implemented by the class Devices.Device. Each

device has a device type associated with it (class Devices.Devtype); the

device type de�nes the set of attributes which the device holds. The device

types are de�ned during coor initialization.

Some items are generic, in that there is a set of identical items. Such items

are usually implemented using the Generic_Item.Numbered_Item class. In

this case, the name of the item is simply a number. Each distinct set of such

objects must thus have a distinct class tag.

The registry into which the objects are collected is implemented by the

class Config.D0_Config. This class has high-level methods for allocating

the various item types.

The following table gives the presently de�ned class tags, the Python

classes used to implement them, and a brief description of each.

conn Config.Connection_Status_Reporter_Object

Used to send status information about the down-

loader connections to monitoring programs.

client Clients.Client

Represents an external program requesting ser-

vices of coor. This includes instances of taker,

as well as monitoring and control programs. This

class derives from Ownership.Owner, so these ob-

jects can own others.

logclient Logger.Logger_Client

The data logging system needs to be told some

information about each client which could start a

run, such as whether or not it has recording turned

on (see Sec. 5.2.5). These objects have the at-

tributes containing that information. Note that

these objects are not permanent; they are created

when a client loads a con�guration, and destroyed

when they are deallocated.

l1eg Level1.L1eg

A Level 1 exposure group.

l1specterm Level1.L1specterm

A Level 1 speci�c (named) and/or term. Also

called direct-in terms.

l1muomgr0 Level1.L1trigmgr

7

l1sftmgr0 Level1.L1trigmgr

Level 1 and/or terms from trigger manager cards.

l1emetsum Level1.L1ct_Thresh

l1hdetsum Level1.L1ct_Thresh

l1misspt Level1.L1ct_Thresh

l1totetsum Level1.L1ct_Thresh

Level 1 calorimeter trigger global energy threshold

and/or terms.

l1emetrefset Level1.L1ct_Refset

l1hdvetorefset Level1.L1ct_Refset

l1ltrefset Level1.L1ct_Refset

l1totetrefset Level1.L1ct_Refset

Level 1 calorimeter trigger reference sets.

l1emcount0 Level1.L1ct_Count

l1emcount1 Level1.L1ct_Count

l1emcount2 Level1.L1ct_Count

l1emcount3 Level1.L1ct_Count

l1totcount0 Level1.L1ct_Count

l1totcount1 Level1.L1ct_Count

l1totcount2 Level1.L1ct_Count

l1totcount3 Level1.L1ct_Count

Level 1 calorimeter trigger count threshold and/or

terms.

l1ltcount0 Level1.L1ct_LT_Count

l1ltcount1 Level1.L1ct_LT_Count

l1ltcount2 Level1.L1ct_LT_Count

l1ltcount3 Level1.L1ct_LT_Count

l1ltcount4 Level1.L1ct_LT_Count

l1ltcount5 Level1.L1ct_LT_Count

l1ltcount6 Level1.L1ct_LT_Count

l1ltcount7 Level1.L1ct_LT_Count

Level 1 calorimeter trigger large tile count thresh-

old and/or terms.

l1bit Level1.L1bit

Level 1 speci�c trigger bit.

l3l1shad Level3.L3l1shad

8

Level 3 `shadow' of Level 1 information. There is

one of these objects for each l1bit object. Some

information associated with a Level 1 trigger bit

needs to be sent to Level 3 as well (such as the

crate readout list). The attributes of this object

keep track of that information.

l3bit Level3.L3bit

Level 3 trigger bit.

crate Devices.Device

A digitization crate; a geographic section.

dev Devices.Device

A generic epics device.

5 Protocols

This section summarizes the protocols used in the communication between

coor and the various processes with which it communicates.

5.1 Coor-Client Communication

All communication between coor and the clients is by way of d0me string

messages. The usual scenario is for the client to send a command to coor,

then wait for a response. Commands should not be overlapped (except for

abort, as noted below). There are also several responses which coor may

send asynchronously; these include TEXT, UPDATE_MODATTR, UPDATE_NEWOBJ,

UPDATE_DELOBJ, and CMND, and are discussed further below.

Except as noted below, coor will respond to each command with a mes-

sage starting with either DONE, FAIL, or ABORTED. In each case, there may be

further data following the keyword, as noted for the individual commands

below. DONE means that coor has made the state change requested by the

command, FAIL or ABORTED means that it has not. (Note that this is not

necessarily the same as whether the command completed successfully or not.)

ABORTED is sent after a download has been aborted, either explicitly by the

user sending an abort command, or automatically, following a timeout.

Commands which initiate a download may take considerable time to com-

plete. To con�rm that the download has started, coor will �rst reply with

9

WAIT. This will then be followed by one of DONE, FAIL, or ABORTED, once the

download is complete.

At any time, coor may send a TEXT message to the client. This will

contain additional text after the keyword which should, in most cases, be

displayed to the user. In a couple instances, taker parses the TEXT com-

mands returned from a dump. We probably should use a di�erent reply type

for asynchronous broadcast messages, to avoid race conditions where they

could get lost (or screw up the parsing).

If the run state is changed by coor, it will send a CMND message to the

client in order to notify it of the change. The messages of this type presently

de�ned are:

� CMND pause | coor has paused the client's run.

� CMND stop | coor has stopped the client's run.

Following are all the client commands which coor recognizes. Note that

the set of these that are allowed depends on what coor thinks the current

state of the client is | see the state diagrams for details.

� abort | Abort a download in progress. It should be sent after the

WAIT reply, but before the �nal reply. Note that coor will not gener-

ate a DONE or FAIL response for this command | when the download

completes, the abort request is also considered ended.

� broadcast text | Send text to all clients as a TEXT message. The

message will be pre�xed with `-->'.

� coor_force_pause | Used internally to implement the force_pause

command. This command should not be sent by clients.

� coor_force_stop | Used internally to implement the force_stop

command. This command should not be sent by clients.

� dump pattern |Dump coor's internal con�guration state to the client.

The argument pattern is a regular expression; information about all

objects matching pattern will be included in the dump. If pattern is

omitted, information for all objects is dumped.

The information returned from coor will be in a message starting

with the keyword DUMP. The rest of the message will consist of a string

10

which, when passed through the Python reader, will produce a Python

dictionary containing the dump data.

The DUMPmessage will then be immediately followed by a DONEmessage.

� force_invalidate pattern | Invalidate all items which match the reg-

ular expression pattern. (If pattern is omitted, all items are considered

to match.) Only items which are owned by some client are invalidated.

This command di�ers from the invalidate command in that it does

not require that the client issuing the command own the items being

invalidated.

� force_pause runlist | Force the runs given by runlist to pause. Run-

list should be a space-separated list of run numbers. If it is omitted,

all runs in progress will be paused. When con�guration type keywords
are implemented, this should pause only those runs which have been
declared as respecting pauses. The intention is that this message is

sent by the alarm server to coor when there is a fatal alarm.

� force_stop runlist | Stop the runs given by runlist, which should

be a space-separated list of run numbers. If it is omitted, all runs in

progress will be stopped. The intention is that this message is sent by

the data logging system to stop a run.

� free | Free all resources held by this client.

� info report-type | Get back a formatted report of some aspects of the

current state. This report will be sent back as TEXT messages (followed

by a DONE message); it is intended to be human-readable. The report

types available are:

{ clients|Print information about all clients presently connected

to coor.

{ downloaders | Print information about the status of coor's

connections to the download targets.

{ l1bits | Print information about all presently de�ned Level 1

trigger bits.

{ local_l1bits | Print information about the Level 1 trigger bits

owned by this client.

11

� invalidate pattern | Invalidate all items which match the regular

expression pattern and are owned by this client. (If pattern is omitted,

all items are considered to match.)

� load con�gname | Load a new con�guration, named con�gname. The

present implementation looks for a �le `configs/con�gname.py' and

loads it. This �le should de�ne a function called con�gname, which

takes the clientstat object as an argument and returns the download

list. The details of this are subject to change.

� modify name |Modify the currently downloaded con�guration, based

on the commands in name. The present implementation looks for a �le

`configs/name.py' and loads it. This �le should de�ne a function

called name, which takes the clientstat object as an argument and

returns the download list. The details of this are subject to change.

� pause | Pause the client's run.

� prescale bitnumber prescale : : : | Change the prescale for Level 1

trigger bit bitnumber to prescale. Multiple bitnumber{prescale pairs

may be given in the command. All trigger bits being modi�ed must be

owned by this client.

� reconnect | If the connections to any of the download targets has

been lost, this command will attempt to reestablish them. Note that

this is done implicitly before each download. (In fact, this command is

implemented by merely queuing an empty download.)

� recording state | Set the recording state for this client. The state

argument should be either `on' or `off'.

� reenable bitnumber | Tell the trigger framework to reenable the

Level 1 trigger bit bitnumber. This only has an e�ect if the bit was

con�gured in auto-disable mode. The bit must be owned by this client.

� resume | Resume the client's run after a pause.

� revalidate | If any of the items owned by this client are marked as

invalid, try to do the required downloads to make them valid again.

This is done automatically before starting a run.

12

� start | Start a new run. The run number of the new run will be

returned as an argument in the DONE message.

� stop | Stop the client's run.

� update pattern |Request asynchronous updates for changes in coor's

con�guration database for all objects matching the regular expression

pattern. If pattern is omitted, all objects are considered to match.

The messages sent back by coor when updates occur are of one of

three forms:

{ UPDATE_MODATTR objname attrs | Some attributes of objname

have changed. Attrs is a string which when passed through the

Python reader will yield a Python dictionary containing the mod-

i�ed attributes.

{ UPDATE_NEWOBJ objname attrs | The object objname has been

added to the con�guration. Attrs is a string which when passed

through the Python reader will yield a Python dictionary contain-

ing the attributes of the new object.

{ UPDATE_DELOBJ objname | The object objname has been re-

moved from the con�guration.

Only the pattern from the last update command is remembered.

Probably need a dump update combo, to avoid possible lossage of up-

dates between the two commands.

� username name | Set a username for this client, for use in status

displays. Note: coor does not send a reply for this command. Should

this be changed, for consistency?

5.2 Coor-Downloader Communication

There is a common protocol for communication between coor and the tar-

gets. Within the context of this protocol are various target-speci�c com-

mands. We �rst describe the common protocol, then summarize the target-

speci�c parts.

13

5.2.1 Common Protocol

The design of the common downloading protocol was the result of several

considerations:

� The protocol should be usable for all the download targets.

� It should allow the target to process requests concurrently. This implies

that coor should be able to send multiple download requests to the

target without receiving a reply, and that the replies may be sent back

to coor in a di�erent order than that in which the commands were

received.

� It should allow the target to process requests in a \batched" fashion |

to queue up all the commands for a particular con�guration request,

and only start processing them once all commands have been received.

This implies that there must be some way to mark the end of a con�g-

uration request.

� The protocol should be easy to test, debug, and extend.

The resulting protocol has the following characteristics:

� d0me is used for the underlying transport. One command or ac-

knowledgment is sent per d0me message. All messages are of type

String_Message. Where it makes sense, targets should not be case-

sensitive.

� Commands are always sent one way: from coor to the target. As

discussed in Sec. 2, a target that needs to make asynchronous requests

should explicitly open an additional command channel to coor.

� Except as noted below, every command should result in an acknowl-

edgment from the target back to coor. In some cases, the order of

acknowledgment may not be the same as the order in which the com-

mands were issued. In order to keep straight the correspondence be-

tween commands and acknowledgments, each command has a \com-

mand id" which is sent with the command and returned with the ac-

knowledgment. Targets should not assume anything about the format

of this id, other than that it consists of printable characters, contains no

whitespace, and is no longer than 32 characters. Do we want to make

14

stronger guarantees here? E.g., that it's a monotonically increasing

number?

� Except as explicitly, noted, commands can be batched. A batch is

implicitly started by the �rst batched command received. It is ended by

the special command `configure'. When configure is received, the

batched commands should describe a consistent con�guration. Once

the configure command is sent, no additional commands will be sent

(except for abort, and, if the connection breaks, init) until every

command in the batch (including the configure command) has been

acknowledged.

The target can start processing commands at any time. It can pro-

cess them as they are received, or it can queue them up and process

them all once the configure command has been received. Acknowl-

edgments can be sent before the configure command arrives. Except

for the configure command (which must be acknowledged last) and
for commands within a block, commands may be acknowledged in any

order.

Note that it is possible for coor to send a configure command with no

preceding commands. Targets should simply acknowledge and ignore

these requests. But perhaps the sending of these should be suppressed?

Commands which are not batched are called immediate. They will not

be followed by a configure command, and in most cases, no other

commands will follow (except for abort and possibly init) until the

command is acknowledged.

The general format of a command sent by coor to the targets is as

follows:

command-id command [args. . .]

The target should reply to the command with a message of the form

command-id status [text]

The status should be one of the strings `ok', `bad', or `more'. The optional

text is either status information being returned from the command (if status

is `ok') or an error message (if status is `bad'). If text would take more than

one line, each line should be sent separately, in order. For all except the last

15

line, status should be `more'. For the last line, status should be the �nal

value (either `ok' or `bad').

If status is `ok' and the command was not requesting any information,

then text may be blank. If status is `bad', text should contain a brief error

message.

There is a set of common commands which should be recognized by all

targets. They might not have to do anything for some of them, but they

should be able to recognize and acknowledge them:

� configure | As discussed above. A simple target which processes all

commands as they are received can ignore these messages.

� abort | This command is somewhat special. It it sent to the targets

by coor when a download has been aborted. When this command is

received, the target may discard any commands which it has queued,

but has not yet processed. If there are no queued commands, the

abort request should be ignored. (In particular, should not undo any

commands which it has already reported as completing successfully.)

The target need not respond to the abort command.

A simple target which processes all commands as they are received can

ignore these messages.

� init | This is an immediate command. The target should immedi-

ately end all ongoing DAQ, release resources, and restore all program-

ming to the default state.

It should not be necessary to reboot nodes, reload FPGAs, etc. in

response to this command. The assumption being made is that the

target system is still sane, but is in an unknown state.

This is sent by coor on startup, and whenever a connection to a target

has been broken and reestablished.

� start_run runno spectrigs | This is an immediate command. Run

number runno is starting. A successful reply to this command im-

plies that the target is now ready for that run to start. Spectrigs is a

list of Level 1 speci�c triggers participating in the run. It is a space-

separated list of integers. (This may get abbreviated using a notation

like FIRST:LAST to specify a range.)

16

At the time this message is issued, all the triggers associated with the

run in question will be disabled, so data for that run will not be owing

yet.

� stop_run runno | This is an immediate command. Run number

runno is stopping. A successful reply to this command implies that

the target is now ready for that run to stop.

At the time this message is issued, all the triggers associated with the

run in question will be disabled. But there is presently nothing to

synchronize ushing of any bu�ered data. Is this needed?

� begin_block

� end_block | These are not really commands, per se, and need not

be acknowledged. Commands which occur between begin block and
end block must be processed in the order in which they were sent.

Only batched commands may appear within a block, and configure

may not appear within a block.

Not all order dependencies will be protected within a block. In general,

if it doesn't make sense to reorder the commands they won't be put
into a block. (This will probably only be used for epics downloads.)

� pause

� resume | Pause and resume processing events. Systems not in the
readout chain won't have to do anything for these commands.

� begin_store storenum

� end_store storenum | Note that a store is beginning or ending.

Note one exception to the above protocol: all messages sent by coor to

the data logging system will have the string `COOR ' pre�xed to them.

The following sections summarize the target-speci�c commands for each

target. Note that these are not intended to be complete summaries of the

commands which the targets can accept; rather, they document the subset

of those commands which the present implementation of coor will actually

send.

17

5.2.2 Epics

Every downloadable epics device has an object name, which consists of a

class-tag:name pair. (See Sec. 4.) The downloadable state of a device con-

sists of a set of named attributes, each of which has some value.

The command to request a download consists of the device name (without

the class tag) (maybe we should preserve the class tag?) followed by a list

of attribute name-value pairs:

name attr value . . .

Any value which contains embedded whitespace should be enclosed in single

quotes.

Perhaps a keyword should be added before all download requests?

5.2.3 Level 1

The Level 1 target is presently used to con�gure both the Level 1 trigger

framework and the Level 1 calorimeter trigger.

Here are the commands used to con�gure the Level 1 framework:

� L1FW_Expo_Group egnumber

[And Or List termstring]

[Get Sect List geosect-string]

Con�gure L1 exposure group egnumber. The list of associated and/or

terms is given by termstring. This is a space-separated list of integers;

a dash before an integer indicates that that particular term is to be

vetoed. The list of geographical sections to read out is given by geosect-

string. This is a space-separated list of integers, except that a range of

consecutive integers from �rst to last inclusive may be written using

the notation `�rst:last '.

� L1FW_spec_trig bitnumber

[deallocate]

[prescale prescale]

[L1 Qualifier l1quali�ers]

[Obey FE Busy]

[Auto Disable]

[Re Enable]

18

[coor enable]

[expo group egnumber]

[And Or List termlist]

Con�gure L1 speci�c trigger bitnumber. If bitnumber starts with a

dash, any boolean options mentioned in the command are to be turned

o� ; otherwise, they are to be turned on.

The keywords in the command have the following meanings:

{ deallocate | Reset the bit to its default con�guration.

{ prescale prescale | Set the bit's prescale to prescale.

{ L1_Qualifier l1quali�ers | Set the bit's L1 quali�er mask to

l1quali�ers, which should be a space-separated list of integers.

{ Obey_FE_Busy | Turn on/o� whether or not the bit is disabled

on front-end-busy.

{ Auto_Disable | Turn on/o� auto-disable (one-shot) mode.

{ Re_Enable | Reenable an auto-disable'd bit.

{ coor_enable | Enable/disable this trigger bit.

{ expo_group egnumber | Set the exposure group associated with

this trigger bit to egnumber, which should be an integer.

{ And_Or_List termlist | Set the list of and/or terms for this bit

to termlist. This is a space-separated list of integers; a dash before

an integer indicates that that particular term is to be vetoed.

Here are the commands used to con�gure the Level 1 calorimeter trigger:

� L1CT_Energy_Threshold type Comparator number Value thresh

Set a threshold for comparator number (an integer) of type type to

value (a oating point number). The possibilities for type are `EM_Et',

`HD_Et', `TOT_Et', and `Miss_Pt'.

� L1CT_Ref_Set type number contents

Set the reference set number of type type to the string contents. (This

string is passed through coor uninterpreted. Maybe we should be

smarter than that?) The possibilities for type are `EM_Et_Ref_Set',

`HD_Veto_Ref_Set', `TOT_Et_Ref_Set', and `Large_Tile_Ref_Set'.

19

� L1CT_Count_Threshold type Ref_Set refset Comparator number

Value value

Set the count threshold number (an integer) of type type associated

with reference set refset (an integer) of that type to value (an integer).

The possibilities for type are: `EM_Et_Towers' and `Tot_Et_Towers'.

5.2.4 Level 3

Here are the commands coor sends to con�gure Level 3:

� clear_trigger number

Forget about L3 bit number number.

� define_trigger number l1bit

De�ne L3 bit number number, associated with the L1 bit l1bit.

� crate_list l1bit geosect-list

Note that the list of crates read out by L1 bit l1bit is geosect-list. This

is a space-separated list of integers, except that a range of consecutive

integers from �rst to last inclusive may be written using the notation

`�rst:last '.

5.2.5 Data Logging

Since data logging con�guration information is associated with particular

clients of coor, we must have some way of identifying these clients to the

logging system. For this purpose, each client needing logger con�guration is

assigned a small integer \client number." The commands sent are as follows:

� clear_client client-number

Delete all con�guration information for client client-number. The num-

ber may then be reused in subsequence con�guration messages.

� set_client client-number [recording on] [recording off]

[configname con�gname]

Change con�guration information for client client-number. Con�gname

gives the name of the con�guration which this client has loaded. The

strings `recording on' and `recording off' toggle recording on and

o� for this client.

20

� runinfo client-number runnumber

Declare that run number runnumber is being started by client client-

number. This is an immediate command, and is sent just before the

start_run command.

6 Run Transitions

Here we summarize the actions taken when starting and stopping runs.

Starting a run:

� Do a revalidation step. If this fails, the run cannot start.

� Send a start_run message to all targets. The alarm system should
probably also be noti�ed here. Wait until all have responded. If any

report an error, the run cannot start.

� Tell the L1 framework to enable the trigger bits for this run.

Stopping a run:

� Tell the L1 framework to disable the trigger bits for this run.

� Send a stop_run message to all targets. The alarm system should
probably also be noti�ed here. At present, there is nothing to guarantee

that all events have been ushed through the system.

Presently, there are no explicit pause requests sent to the framework. Is

this needed?

A State Diagrams

21

��
++
++
��
��
��

init�����
�

��

��������disco

++
++
��
��
��

dnl1
���
���
���

�

config / config

+++
+++
���
������

mult /

configured
���
���
���
���
���
���
���

�

done, fail / dnlfin

++
++
��
��
��

abort1
��������
��������
��������
��������

�

abort / abort

++
++
++

��
��
��
��

disco /
mult /

abort2
�����������
�����������
�����������
�����������

�

disco / abort

++
++
��
��
��

free1

���
���
���
���
���
���
����

free / release

++
++
��
��
��

modify1
�����
�����
�����
�����
�����

�

modify / config

�����
�����
�����
�����
�����

�

revalidate / revalidate

+++
+++
���
������

mult /

revalidate1

++
++
++

��
��
��
��

disco /
mult /

free2

��������
��������
��������
��������
��������
��������
���������

disco / release

���
���
����

done, fail / dnlfin_free

������disco

++
++
��
��
��

free3

�
�
�
�
��

done, fail / dnlfin_release

���disco

�����
�����
������

done, fail / dnlfin_free_retabort

���
���

�
disco

�
��done, fail / dnlfin_release

��
��
��
��
�done, fail / dnlfin_free

�����
�����
�����
�����
������

done, fail / dnlfin

���
���
���
���
���
���
����

disco / abort

++
++
��
����

mult /

abort3��������� done, fail / dnlfin_retabort
�
��
disco

+++
+++
���
������

mult /

revalidate1

+++
+++
���
������

mult /

configured

++
++
��
����

mult /

abort3

++
++
++

��
��
��
��

disco /
mult /

abort2

�����
�����
�����
�����

�

start / revalidate

����
����
�����

fail / dnlfin_retfail

���
���
���
����

abort / abort

�
�
��

abort / abort

���
���
����

disco / abort

��
��
��
��

�

start / revalidate

+++
+++
���
���
���

startrun1
�
�
�

done / dnlfin_startrun

+++
+++
+++

���
���
���
���

disco /
mult /

stopwait2�������
�������
�������
�������
�������

�

disco

++
++
���
���
���

stoprun3

���
����

fail / dnlfin_stoprun

+++
+++
���
���
���

startrun2
�
�
�
�
�
�

�

done / dnlfin_enablel1

+++
+++
���
������

disco /

stopwait1

�
�
�
�
�
��

done, fail / dnlfin_stoprun

++
++
++

��
��
��
��

disco /
mult /

free2

��
��
��
���done, fail / dnlfin_release

��
��
��
��
�

done, fail / dnlfin_retfail

����disco

+++
+++
���
������

disco /

startwait2

����
disco

++
++
���
���
���

stoprun4

�
�
��

fail / dnlfin_disablel1

++
++
��
����

mult /

running
������
������
������

�
done / dnlfin

���
����

done, fail / dnlfin_disablel1

��
��
��
���

done, fail / dnlfin_stoprun

�����
�����

�
disco

��
��
��
��
���

disco / disablel1

++
++
��
����

mult /

modify2

++
++
��
����

mult /

pausing
�����

pause / disablel1

++
++
���
������

mult /

stoprun2

������
������

�

stop / disablel1

++
++
���
���
���

stoprun1

�
�
�
�
�
��

done, fail / dnlfin_stoprun

���
���
���
���

�

disco

������
������
������
������
������
������
�������

done, fail / dnlfin

���
���
�

disco

��
���

disco

������
modify / config

++
++
��
����

mult /

running

++
++
��
����

mult /

modify2
�����
�����
�����
�����
�����
�����

�

modify / config

������
������
������
������
������
������
�������

done, fail / dnlfin

++
++
��
��
��

abort4

������������abort / abort

++
++
++

��
��
��
��

disco /
mult /

abort5
�����
�����
�����

�
disco / abort

������
������
������
������
������
�������

done, fail / dnlfin_retabort

������
������
������
������

�

disco

+++
+++
+++

���
���
���
���

disco /
mult /

stopwait2
�
�
�
�

�

done, fail / dnlfin_disablel1

++
++
��
����

mult /

running

++
++
��
����

mult /

pausing
������
������
������
������
������

�

pause / disablel1

++
++
��
��
��

paused������
������
������
������

�

done, fail / dnlfin

+++
+++
���
������

disco /

pausewait
���disco

+++
+++
+++

���
���
���
���

disco /
mult /

stopwait2

��
��
���

done, fail / dnlfin_disablel1

+++
+++
���
���
���

resuming

������
������
������
������
�������

resume / enablel1

�
�
�
�
�
�
��

disco / disablel1

++
++
��
��
��

modify3
�
�
�

�

modify / config

������
������
������
������
�������

done / dnlfin

�������
�������
�������
�������
�������

�

fail / dnlfin_retfail

++
++
��
����

disco /

reswait���disco

��
��
���

done, fail / dnlfin_disablel1

�
�
��

done, fail / dnlfin

++
++
++

��
��
��
��

disco /
mult /

abort5
�����
�����
�����

�
disco / abort

++
++
��
��
��

abort6
���
���
���

�

abort / abort

���
���
���
���
���
���
����

done, fail / dnlfin_retabort

��������� disco

++
++
���
������

mult /

stoprun2

������stop / disablel1

+++
+++
���
���
���

reconnect1

+++
+++
���
������

disco /

reconnect2

��
��
���

reconnect / reconnect

�
�
�

done, fail / dnlfin

������disco

�
�
�

done, fail / dnlfin

����

force_pause,
force_stop

+++
+++
���
���
���

forcepausing
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�

force_pause / disablel1

�
�
��

disco

�����
�����

�done, fail / dnlfin_retpausecmd

�
�
���

force_pause

��
�����

force_pause,
force_stop

+++
+++
���
������

mult /

forcestop2

�������force_stop / disablel1

+++
+++
���
���
���

forcestop1

�
�
�
�
�
�
�
�
�
�
�
�
��

done, fail / dnlfin_stoprun

���
���
���
����

disco

����disco

�����
�����
�����
������

done, fail / dnlfin_retstopcmd

+++
+++
���
������

mult /

forcestop2
����
����
����

�
force_stop / disablel1

22

��
++
++
��
��
��

init�����
��quit

++
++
���
���
���

infowait1
������
������

�
info / info

�����
�����
�

done, fail / reply

+++
+++
���
���
���

downloading
�
�
�
�
�
�
�

�

config / config

+++
+++
���
���
���

configured
�
�
�
�
�
�
�
�

�

done / reply

��
��
��
��
��
��
���

fail / reply_clear_config

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
����������quit

++
++
���
���
���

freewait1

������
������
������
������
������

�free / free++
++
���
���
���

freewait2

������
������
������
������
������
�������

config / free_for_config

+++
+++
���
���
���

startwait1
�����
�����
�����
�����
�����
�����

�

start / start

++
++
���
���
���

infowait2����� info / info

++
++
��
��
��

modify1

��������modify / modify
��������revalidate / revalidate
��������invalidate / invalidate

�
���

abort / abort

��������
done, fail / reply

�����done, fail / reply

���������
���������
���������
���������
���������
���������
���������
���������
���������
����������

done / reply_clear_config

�������
�������
�������
�������
�������

�

fail / reply

�����
�����
�����
�����
�����

�

fail / reply_clear_newconfig

����
����

�
done / reply_config

++
++
���
���
���

freewait3

�
�
�
�
�
�
��

abort

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�

fail / reply_clear_newconfig

���
���
����

done / reply_clear_configs

++
++
��
��
��

running

����
����
����
����
����
�����

fail / reply

�����
�����
�����
�����
�����

�

done / start_reply

+++
+++
���
���
���

stopwait1

�����
�����
�����
�����
������

stop / stop

+++
+++
���
���
���

pausewait1
�����
�����
�����
�����

�

pause / pause

++
++
���
���
���

infowait3����� info / info

++
++
��
��
��

modify2

�������
modify / modify������

������� done, fail / reply

�����done, fail / reply

������
������
������
������

�

fail / reply

����
����
����
����
����
����
�

done / reply_clear_runnumber

�����
�����
�����
������

fail / reply

++
++
��
��
��

paused
�����
�����
�����
�����
�����

�

done / reply

+++
+++
���
���
���

resumewait1

�����
�����
�����
�����
������resume / resume

++
++
���
���
���

infowait4������ info / info

+++
+++
���
���
���

stopwait2

�����
�����
������ stop / stop

++
++
��
��
��

modify3�������
modify / modify

������� done, fail / reply

�����
�����
�����

�
fail / reply

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������

done / reply_clear_runnumber

������done, fail / reply

������
������
������
������
������

�

fail / reply

������
������
������
�������

done / reply

����
force_pause,
force_stop

�
���

force_pause,
force_stop

��
���

force_pause

�
�
�
�
�
�
�
�
�
�

�

force_pause / pausemsg

�
�
�
�
�
�
�
�
�
�
�
��

force_stop / stopmsg

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
���������

force_stop / stopmsg

23

